The BLINKIN LED Driver comes with the 36” PWM Cable (REV-11-1130), that can be used to connect the BLINKIN to the NI roboRIO’s PWM ports for communication. To power the BLINKIN you need an XT30 Cable with one male connector and bare wire on the opposing end. Plug the male connector into the BLINKIN and the bare wire ends into the appropriate Power Distribution Hub channel.
The BLINKIN is capable of driving either a 5V Addressable LED Strip (REV-11-1198) or a 12V RGB LED Strip (REV-11-1197). The image below shows how both types of LED strips connect to the BLINKIN using the BLINKIN LED Cable Adapter (REV-11-1105).
Always be sure to read the relevant rules and use appropriate gauge wiring before using anything on your competition robot.
After wiring your Blinkin into your robot, follow the setup instructions and follow the instructions on PWM control as desired.
In the FRC Control System, motor outputs range varies depending on which type of motor controller is initialized. The output pulse range is scaled from the user requested output power of -1 to 1 to the range defined for each type of Motor controller.
The SPARK motor controller type output directly matches the input to the Blinkin, which makes the math to convert the -1 to 1 code range to the 1000-2000us Blinkin input range the simplest. Other control types, including servo, from the roboRIO can also be used, but the user will need to scale input range correctly to ensure they are sending only a valid PWM range and that they can select the desired LED pattern.
As an example, referencing the Excerpt from the LED Pattern Tables includes an excerpt from the LED Pattern Tables, and includes the correct SPARK motor output value for each pattern. The table below lists motor control values associated with specific patterns:
Adding LEDs to your robot (or other project) can do more than just make them look cool, you can use LEDs to provide critical visual feedback. Here are some examples:
Program a controller button to change the LED output pattern (e.g. 85 – Solid Yellow) and the drive can use the LEDs to communicate to the human player at a portal station across the field that the robot is ready to receive a game object.
If the driver has poor visibility to see if the robot has acquired a game object, add a sensor to the intake and the LED strip can be programmed to automatically display a new pattern when the object is acquired. The driver never has to take their eyes off the robot to check the dashboard because the robot will clearly display its status.
Using the match time value available in software, the LEDs can be changes to a time warning pattern (e.g. – Solid Red) with X seconds left in a match.
The robot can display a different pattern when enabled vs disabled which provides a more visible indicator of the state of the robot than the RSL.
WPI Motor Control
Open Type
Minimum Pulse
Width Output (us)
Maximum Pulse
Width Output (us)
SPARK
1000
2000
SRX
997
2004
Talon SR
989
2037
Jaguar
697
2322
LED Color/Pattern
Motor Output Value
Ocean Colored Rainbow
-0.95
Larson Scanner (Similar to a Cylon)
-0.35
Fast Heartbeat in User Selected Team Color 1
0.07
Solid Blue
0.87
Pulse Width
(us)
roboRIO SPARK
Value
Pattern Type
Pattern/Palette
1005
-0.99
Fixed Palette Pattern
Rainbow, Rainbow Palette
1015
-0.97
Fixed Palette Pattern
Rainbow, Party Palette
1025
-0.95
Fixed Palette Pattern
Rainbow, Ocean Palette
...
1325
-0.35
Fixed Palette Pattern
Larson Scanner, Red
...
1515
0.03
Color 1 Pattern
Heartbeat Slow
1525
0.05
Color 1 Pattern
Heartbeat Medium
1535
0.07
Color 1 Pattern
Heartbeat Fast
...
1765
0.53
Color 1 and 2 Pattern
Color Waves, Color 1 and 2
1935
0.87
Solid Colors
Blue
1945
0.89
Solid Colors
Blue Violet
1955
0.91
Solid Colors
Violet