LogoLogo
REVLib Docs
  • REV ION Brushless
  • Quick Links
  • Frequently Asked Questions
  • NEO Brushless Motors
    • Brushless DC Motor Basics
    • NEO Vortex
      • Docking a SPARK Flex
      • Vortex Shafts
      • Installing a Shaft
      • NEO Vortex Solo Adapter
    • NEO V1.1
      • NEO V1
      • Pinion Pressing Guides
    • NEO 550
      • Pinion Pressing Guide
    • Dynamometer Testing
    • Motor Comparison
  • SPARK Flex Motor Controller
    • SPARK Flex Overview
      • SPARK Flex Dock
    • SPARK Flex Specifications
    • SPARK Flex Feature Description
      • Power and Motor Connections
      • Control Connections
      • Data Port
      • Mounting Holes
      • Control Interfaces
      • Mode Button
      • Operating Modes
    • SPARK Flex Getting Started
      • Wiring the SPARK Flex
      • Make it Spin!
      • Basic Configurations
    • SPARK Flex Status LED Patterns
    • SPARK Flex Troubleshooting
    • SPARK Flex Operating Modes
  • SPARK MAX Motor Controller
    • SPARK MAX Overview
    • SPARK MAX Specifications
      • Power and Motor Connections
      • Control Connections
      • Encoder Port
      • Data Port
    • SPARK MAX Getting Started
      • Wiring the SPARK MAX
      • Make it Spin!
      • Basic Configurations
    • SPARK MAX Status LED Patterns
    • SPARK MAX Troubleshooting
    • SPARK MAX Operating Modes
    • SPARK MAX Control Interfaces
    • SPARK MAX Configuration Parameters
    • Using Encoders with the SPARK MAX
      • Absolute Encoders
      • Alternate Encoder Mode
      • Securing the Encoder Adapters
      • Calibration for MAXSwerve
  • REVLib
    • REVLib Overview
      • REVLib Changelog
      • Migrating to REVLib 2025
    • Closed-Loop Control Overview
      • Closed Loop Control Getting Started
      • Getting Started with PID Tuning
      • Position Control Mode
      • Velocity Control Mode
      • Current Control Mode
      • Smart Motion Control
      • Smart Velocity Control
    • Code Examples
    • Migrating to REVLib
    • Device Firmware Changelogs
  • Tips and Tricks
    • Anderson Powerpole Connectors
    • REV Hardware Client Documentation
  • Legacy Documentation
    • SPARK Motor Controller
    • SPARK MAX Client
      • Navigating the SPARK MAX Client
      • Updating Device Firmware
      • Recovery Mode with the SPARK MAX Client
      • SPARK MAX Client Troubleshooting
Powered by GitBook
On this page
  • CAN/PWM Connections
  • USB-C Port

Was this helpful?

Export as PDF
  1. SPARK Flex Motor Controller
  2. SPARK Flex Feature Description

Control Connections

PreviousPower and Motor ConnectionsNextData Port

Last updated 11 months ago

Was this helpful?

The SPARK Flex can be controlled by three different interfaces: servo-style PWM, Controller Area Network (CAN), and USB. The following sections describe the physical connections to these interfaces. For details on the operation and protocols of the PWM, CAN, or USB interfaces, please see .

CAN/PWM Connections

CAN and PWM control connections share a set of four integrated 26 AWG twisted wires extending 45 cm from the case of the motor controller. Each wire is color coded according to its function:

Wire Color
CAN Function
PWM Function

Yellow

CAN High (CANH)

Signal

Green

CAN Low (CANL)

Ground

The wires are terminated with two 1 x 3, 0.1 in pitch, rectangular connectors, both excluding the center pin. One connector is pinned and the other socketed to facilitate daisy-chaining between multiple CAN devices on the bus when using the CAN interface.

Each matching wire pair is physically connected to its functional counterpart within the device. Even if the SPARK Flex loses power, the CAN bus remains unbroken, leaving downstream devices unaffected.

Pay close attention when daisy-chaining devices, and make sure that the colors match from connector-to-connecter along the entire CAN bus. Mismatched connections can cause difficult-to-diagnose communications issues along the entire bus.

When using the PWM interface, only one of the two connectors should be used. In most systems this will be the socketed connector. Therefore, it is best practice to secure the unused wires and protect the exposed pins by covering them with electrical tape.

USB-C Port

The USB-C Port is located above the CAN/PWM wires of the SPARK Flex. It supports USB 2.0 and can provide 5 V power for the SPARK Flex's internal microcontroller.

While you can configure the SPARK Flex under USB-only power, you will not be able to spin a motor unless main power is also connected.

More information about what can be configured and operated through the USB port can be found in the USB Interface section.

When daisy-chaining or extending the connections, use the included to secure the two mating connectors together to prevent unintended disconnections.

PWM Cable Clips (REV-11-1229)
Control Interfaces
SPARK Flex Control Connections