LogoLogo
REVLib Docs
  • REV ION Brushless
  • Quick Links
  • Frequently Asked Questions
  • NEO Brushless Motors
    • Brushless DC Motor Basics
    • NEO Vortex
      • Docking a SPARK Flex
      • Vortex Shafts
      • Installing a Shaft
      • NEO Vortex Solo Adapter
    • NEO V1.1
      • NEO V1
      • Pinion Pressing Guides
    • NEO 550
      • Pinion Pressing Guide
    • Dynamometer Testing
    • Motor Comparison
  • SPARK Flex Motor Controller
    • SPARK Flex Overview
      • SPARK Flex Dock
    • SPARK Flex Specifications
    • SPARK Flex Feature Description
      • Power and Motor Connections
      • Control Connections
      • Data Port
      • Mounting Holes
      • Control Interfaces
      • Mode Button
      • Operating Modes
    • SPARK Flex Getting Started
      • Wiring the SPARK Flex
      • Make it Spin!
      • Basic Configurations
    • SPARK Flex Status LED Patterns
    • SPARK Flex Troubleshooting
    • SPARK Flex Operating Modes
  • SPARK MAX Motor Controller
    • SPARK MAX Overview
    • SPARK MAX Specifications
      • Power and Motor Connections
      • Control Connections
      • Encoder Port
      • Data Port
    • SPARK MAX Getting Started
      • Wiring the SPARK MAX
      • Make it Spin!
      • Basic Configurations
    • SPARK MAX Status LED Patterns
    • SPARK MAX Troubleshooting
    • SPARK MAX Operating Modes
    • SPARK MAX Control Interfaces
    • SPARK MAX Configuration Parameters
    • Using Encoders with the SPARK MAX
      • Absolute Encoders
      • Alternate Encoder Mode
      • Securing the Encoder Adapters
      • Calibration for MAXSwerve
  • REVLib
    • REVLib Overview
      • REVLib Changelog
      • Migrating to REVLib 2025
    • Closed-Loop Control Overview
      • Closed Loop Control Getting Started
      • Getting Started with PID Tuning
      • Position Control Mode
      • Velocity Control Mode
      • Current Control Mode
      • Smart Motion Control
      • Smart Velocity Control
    • Code Examples
    • Migrating to REVLib
    • Device Firmware Changelogs
  • Tips and Tricks
    • Anderson Powerpole Connectors
    • REV Hardware Client Documentation
  • Legacy Documentation
    • SPARK Motor Controller
    • SPARK MAX Client
      • Navigating the SPARK MAX Client
      • Updating Device Firmware
      • Recovery Mode with the SPARK MAX Client
      • SPARK MAX Client Troubleshooting
Powered by GitBook
On this page
  • Motor Output
  • Power Input

Was this helpful?

Export as PDF
  1. SPARK MAX Motor Controller
  2. SPARK MAX Specifications

Power and Motor Connections

PreviousSPARK MAX SpecificationsNextControl Connections

Last updated 10 months ago

Was this helpful?

SPARK MAX is designed to drive 12V brushed and brushless DC motors at currents up to 60A continuously. Power and motor connections are made through the two sets of wires built into the SPARK MAX. The wires are 12AWG ultra-flexible silicone-coated wire. Each wire runs approximately 15cm from the end faces of the controller. Be sure to take care when cutting and stripping the wires as not to cut them too short. The figure below shows these connections in detail.

SPARK MAX Motor Controller Power Connections

As with any electrical component, make all connections with the power turned off. Connecting the SPARK MAX to a powered system may result in unexpected behavior an may pose a safety risk.

Motor Output

Motor output wires are labeled as A, B, and C with red, black, and white wires. Brushed motors must be connected to the A and B wires, while brushless motors must be connected to all three. It is critical that the order of the brushless motor wires match the SPARK MAX or the motor will not spin and could be damaged. Additional details are below.

Motor Connections

Power Input

Power input wires are labeled as V+ and V- with red and black wires. The SPARK MAX is intended to operate in a 12 V DC robot system, however, it is compatible with any DC power source between 5.5 V and 24 V.

DO NOT reverse V+ and V- or swap motor and power connections. Doing so will cause permanent damage to the SPARK MAX and will void the warranty.

DO NOT exceed the maximum supply voltage of 30V. Doing so will cause permanent damage to the SPARK MAX and will void the warranty.

When using high-current motors, it is recommended to use a power source that is capable of handling large surge currents, e.g. a 12V lead-acid battery. If the supply voltage drops below 5.5V the SPARK MAX will brown out, resulting in unexpected behavior. It is also highly recommended to incorporate a fuse or circuit breaker in series with the SPARK MAX between it and the power source to prevent exceeding the maximum current rating.

DO NOT exceed the maximum current ratings:

  • 60A for 3 minutes

  • 100A for 2 seconds

Doing so will cause permanent damage to the SPARK Flex and will void the warranty.

SPARK MAX cannot detect which motor type it is connected to. Be sure to configure the SPARK MAX to run the type of motor you have connected. See the section for more details on configuring the appropriate motor type.

Motor Type - Brushed/Brushless Mode