LogoLogo
  • Introduction
  • Getting Started with Control Hub
    • Connect to the Robot Controller Console
    • Updating Wi-Fi Settings
    • Connecting Driver Station to Control Hub
    • Wiring Diagram
    • Next Steps
  • Getting Started with Driver Hub
  • Adding More Motors
    • SPARKmini Motor Controller
    • Adding an Expansion Hub
  • Troubleshooting the Control System
    • General Troubleshooting
    • Control Hub Troubleshooting
    • Driver Hub Troubleshooting
      • Driver Hub Battery Troubleshooting
    • Expansion Hub Troubleshooting
    • Status LED Blink Codes
  • System Overview
    • Control Hub Specifications
    • Expansion Hub Specifications
    • Driver Hub Specifications
    • Port Pinouts
    • Protection Features
    • Cables and Connectors
      • XT-30 - Power Cable
      • JST VH - Motor Power
      • JST PH - Sensors and RS485
    • Integrated Sensors
    • Dimensions and Important Component Locations
  • Updating and Managing
    • Managing Wi-Fi on the Control Hub
    • REV Hardware Client
    • Updating Firmware
      • Firmware Changelog
    • Updating Operating System
      • Control Hub Operating System Changelog
    • Updating Robot Controller Application
      • Updating Robot Controller Application via Android Studio
    • Updating the Driver Hub
      • Driver Hub OS - Change Log
    • Accessing Log Files
    • Android Studio - Deploying Code Wirelessly
  • Hello Robot - Intro to Blocks Programming
    • Welcome to Hello Robot!
    • Where to Program - Client vs. Browser
      • What is an OpMode?
    • Setting up a Configuration
      • Common Errors in Configuration
    • Using a Gamepad
    • Part 1: Tackling the Basics
      • Tackling the Basics Directory - Blocks
      • Creating an OpMode - Blocks
      • Programming Essentials
      • Programming Servos
        • Programming Servo Basics
        • Using a Gamepad with a Servo
        • Programming Servo Telemetry
      • Programming Motors
        • Programming Motors Basics
        • Programming a Motor with a Gamepad
        • Programming Motor Telemetry
      • Programming Touch Sensors
      • Programming Color Sensors
        • Color Sensor Telemetry
        • Detecting Color
    • Part 2: Robot Control
      • Robot Control Blocks Directory
      • Programming Drivetrain Motors
      • Arcade Style TeleOp - Blocks
        • Establishing Variables in Blocks
        • Motor Power vs. Robot Movement
        • Programming Arcade Drive
      • Arm Control - Blocks
        • Adding a Limit Switch
      • Robot Control Full Program
    • Part 3: Autonomous and Encoders
      • ElapsedTime - Blocks
        • ElapsedTime Setup
        • ElapsedTime Logic
        • ElapsedTime - Multiple Movements
      • Encoder Basics
      • Drivetrain Encoders - Blocks
        • Converting Encoder Ticks to a Distance
        • Moving to a Target Distance
        • Setting Velocity
        • Turning the Drivetrain Using RUN_TO_POSITION
      • Arm Control with Encoders - Blocks
        • Estimating the Position of the Arm
        • Calculating Target Position
        • Using Limits to Control Range of Motion
    • Part 4: Going Beyond!
      • Exploring Functions
      • Programming Mecanum - Simplified
      • Programming Mecanum - Refined
  • Hello Robot - Intro to OnBot Java Programming
    • Welcome to Hello Robot!
    • Where to Program - Client vs. Browser
      • What is an OpMode?
    • Setting up a Configuration
      • Common Errors in Configuration
    • Using a Gamepad
    • Part 1: Tackling the Basics
      • Tackling the Basics Directory - OnBot
      • Creating an OpMode - OnBot
      • Programming Essentials
      • Programming Servos
        • Programming Servo Basics
        • Using a Gamepad with a Servo
        • Programming Servo Telemetry
      • Programming Motors
        • Programming Motor Basics
        • Programming a Motor with a Gamepad
        • Programming Motor Telemetry
      • Programming Touch Sensors
    • Part 2: Robot Control
      • Robot Control OnBot Java Directory
      • Programming Drivetrain Motors
      • Arcade Style TeleOp - OnBot Java
        • Establishing Variables in OnBot Java
        • Motor Power vs. Robot Movement
        • Programming Arcade Drive
      • Arm Control - OnBot Java
        • Adding a Limit Switch
      • Robot Control Full Program
    • Part 3: Autonomous and Encoders
      • ElapsedTime - OnBot Java
        • ElapsedTime Setup
        • ElapsedTime Logic
        • ElapsedTime - Multiple Movements
      • Encoder Basics
      • Drivetrain Encoders - OnBot Java
        • Converting Encoder Ticks to a Distance
        • Moving to a Target Distance
        • Setting Velocity
        • Turning the Drivetrain Using RUN_TO_POSITION
      • Arm Control with Encoders - OnBot Java
        • Estimating the Position of the Arm
        • Calculating Target Position
        • Using Limits to Control Range of Motion
  • Sensors
    • Introduction to Sensors
    • Digital
    • Analog
    • I2C
      • IMU
        • Orientating the IMU
      • Adding an External IMU to your Hub
    • Encoders
      • REV Motor Encoders
      • Through Bore Encoder
    • Using 3rd Party Sensors
      • Sensor Compatibility Chart
  • Useful Links
    • REV DUO Build System
  • Legacy Documentation
    • Configuring Your Android Devices
    • Expansion Hub with Android Device Robot Controller
      • Driver Station and Robot Controller Pairing
      • Wiring Diagram
      • Configuration
    • REV Hub Interface Software
Powered by GitBook
On this page
  • Creating minPosition and maxPosition
  • Adjusting our If/Else Statement
  • Overriding Limits
  • Adding a Gamepad Override
  • Adding a Touch Sensor Limit

Was this helpful?

Export as PDF
  1. Hello Robot - Intro to Blocks Programming
  2. Part 3: Autonomous and Encoders
  3. Arm Control with Encoders - Blocks

Using Limits to Control Range of Motion

PreviousCalculating Target PositionNextPart 4: Going Beyond!

Last updated 6 months ago

Was this helpful?

In the idea of creating a limit switch was introduced using a physical sensor, like a touch sensor. We can make use of our motor's built-in encoder to do something similar. While a physical sensor would be described as a hard limit, using the built-in encoder is called a soft limit.

To set the soft limits we will build off the program created in the last sections (HelloRobot_ArmEncoder)!

Creating minPosition and maxPosition

To start, we need to create our upper and lower limits. Create two new variables one called minPosition and one called maxPosition to be added to initialization.

Adjusting our If/Else Statement

To set the limit we need to edit our if/else statement to include our limits:

  • If up on the Dpad is pressed and the position of the arm is less than the maxPosition, then the arm will move to the maxPosition.

  • If down on the Dpad is pressed and the position of the arm is greater than the minPosition then the arm will move towards the minPosition.

Overriding Limits

One of the benefits of having a soft limit is being able to exceed that limit.

Remember that the encoders zero tick position is determined by the position of the arm when the Control Hub powers on! So if we aren't careful to reset the arm before powering on our robot this will effect the arm's range of motion. For instance, if we have to reset the Control Hub while the arm is in the 90 degree position, the 90 degree position will become equal to 0 encoder ticks.

As a back up, we can create an override for the range of motion. There are a few different ways an override can be created, but in our case we are going to use the "A" button and touch sensor to help reset our range.

Adding a Gamepad Override

Now that we have this change in place, when the "A" button is pressed the arm will move toward the starting position.

Adding a Touch Sensor Limit

Next, when the arm reaches and presses the touch sensor we want to STOP_AND_RESET_ENCODER .

Save your OpMode and try testing it!

For now we want the minPosition set as our starting position and the maxPosition set to our 90 degree position. Set minPosition equal to and set maxPosition equal to . The block previously used for can be moved to our maxPosition.

To start, our If/Else Statement will be changed back to a simplified format like we had at the beginning of.

Start by editing the to add another condition. Use the block as the condition. Add a block to the do portion of the block and set the power to -0.5.

We can create an additional statement that focuses on performing this stop and reset when the touch sensor is pressed. Check out from Part 1: Tackling the Basics for review if needed!

estimating the position of the arm
Part 2: Robot Control
Programming Touch Sensors
armPosition
HelloRobot_ArmEncoder program
maxPosition and minPosition added for our limits
Use the "logic" dropdown to fill out the statement's check
Adding gamepad "A" override
Touch sensor limit switch added as a separate If/Else statement
If/Else Statement for arm movement