LogoLogo
  • Introduction
  • Getting Started with Control Hub
    • Connect to the Robot Controller Console
    • Updating Wi-Fi Settings
    • Connecting Driver Station to Control Hub
    • Wiring Diagram
    • Next Steps
  • Getting Started with Driver Hub
  • Adding More Motors
    • SPARKmini Motor Controller
    • Adding an Expansion Hub
  • Troubleshooting the Control System
    • General Troubleshooting
    • Control Hub Troubleshooting
    • Driver Hub Troubleshooting
      • Driver Hub Battery Troubleshooting
    • Expansion Hub Troubleshooting
    • Status LED Blink Codes
  • System Overview
    • Control Hub Specifications
    • Expansion Hub Specifications
    • Driver Hub Specifications
    • Port Pinouts
    • Protection Features
    • Cables and Connectors
      • XT-30 - Power Cable
      • JST VH - Motor Power
      • JST PH - Sensors and RS485
    • Integrated Sensors
    • Dimensions and Important Component Locations
  • Updating and Managing
    • Managing Wi-Fi on the Control Hub
    • REV Hardware Client
    • Updating Firmware
      • Firmware Changelog
    • Updating Operating System
      • Control Hub Operating System Changelog
    • Updating Robot Controller Application
      • Updating Robot Controller Application via Android Studio
    • Updating the Driver Hub
      • Driver Hub OS - Change Log
    • Accessing Log Files
    • Android Studio - Deploying Code Wirelessly
  • Hello Robot - Intro to Blocks Programming
    • Welcome to Hello Robot!
    • Where to Program - Client vs. Browser
      • What is an OpMode?
    • Setting up a Configuration
      • Common Errors in Configuration
    • Using a Gamepad
    • Part 1: Tackling the Basics
      • Tackling the Basics Directory - Blocks
      • Creating an OpMode - Blocks
      • Programming Essentials
      • Programming Servos
        • Programming Servo Basics
        • Using a Gamepad with a Servo
        • Programming Servo Telemetry
      • Programming Motors
        • Programming Motors Basics
        • Programming a Motor with a Gamepad
        • Programming Motor Telemetry
      • Programming Touch Sensors
      • Programming Color Sensors
        • Color Sensor Telemetry
        • Detecting Color
    • Part 2: Robot Control
      • Robot Control Blocks Directory
      • Programming Drivetrain Motors
      • Arcade Style TeleOp - Blocks
        • Establishing Variables in Blocks
        • Motor Power vs. Robot Movement
        • Programming Arcade Drive
      • Arm Control - Blocks
        • Adding a Limit Switch
      • Robot Control Full Program
    • Part 3: Autonomous and Encoders
      • ElapsedTime - Blocks
        • ElapsedTime Setup
        • ElapsedTime Logic
        • ElapsedTime - Multiple Movements
      • Encoder Basics
      • Drivetrain Encoders - Blocks
        • Converting Encoder Ticks to a Distance
        • Moving to a Target Distance
        • Setting Velocity
        • Turning the Drivetrain Using RUN_TO_POSITION
      • Arm Control with Encoders - Blocks
        • Estimating the Position of the Arm
        • Calculating Target Position
        • Using Limits to Control Range of Motion
    • Part 4: Going Beyond!
      • Exploring Functions
      • Programming Mecanum - Simplified
      • Programming Mecanum - Refined
  • Hello Robot - Intro to OnBot Java Programming
    • Welcome to Hello Robot!
    • Where to Program - Client vs. Browser
      • What is an OpMode?
    • Setting up a Configuration
      • Common Errors in Configuration
    • Using a Gamepad
    • Part 1: Tackling the Basics
      • Tackling the Basics Directory - OnBot
      • Creating an OpMode - OnBot
      • Programming Essentials
      • Programming Servos
        • Programming Servo Basics
        • Using a Gamepad with a Servo
        • Programming Servo Telemetry
      • Programming Motors
        • Programming Motor Basics
        • Programming a Motor with a Gamepad
        • Programming Motor Telemetry
      • Programming Touch Sensors
    • Part 2: Robot Control
      • Robot Control OnBot Java Directory
      • Programming Drivetrain Motors
      • Arcade Style TeleOp - OnBot Java
        • Establishing Variables in OnBot Java
        • Motor Power vs. Robot Movement
        • Programming Arcade Drive
      • Arm Control - OnBot Java
        • Adding a Limit Switch
      • Robot Control Full Program
    • Part 3: Autonomous and Encoders
      • ElapsedTime - OnBot Java
        • ElapsedTime Setup
        • ElapsedTime Logic
        • ElapsedTime - Multiple Movements
      • Encoder Basics
      • Drivetrain Encoders - OnBot Java
        • Converting Encoder Ticks to a Distance
        • Moving to a Target Distance
        • Setting Velocity
        • Turning the Drivetrain Using RUN_TO_POSITION
      • Arm Control with Encoders - OnBot Java
        • Estimating the Position of the Arm
        • Calculating Target Position
        • Using Limits to Control Range of Motion
  • Sensors
    • Introduction to Sensors
    • Digital
    • Analog
    • I2C
      • IMU
        • Orientating the IMU
      • Adding an External IMU to your Hub
    • Encoders
      • REV Motor Encoders
      • Through Bore Encoder
    • Using 3rd Party Sensors
      • Sensor Compatibility Chart
  • Useful Links
    • REV DUO Build System
  • Legacy Documentation
    • Configuring Your Android Devices
    • Expansion Hub with Android Device Robot Controller
      • Driver Station and Robot Controller Pairing
      • Wiring Diagram
      • Configuration
    • REV Hub Interface Software
Powered by GitBook
On this page
  • Converting from mm to Feet
  • Converting Feet to Ticks

Was this helpful?

Export as PDF
  1. Hello Robot - Intro to OnBot Java Programming
  2. Part 3: Autonomous and Encoders
  3. Drivetrain Encoders - OnBot Java

Moving to a Target Distance

Now that you have created the constant variables needed to calculate the amount of ticks per mm moved, you can use this to set a target distance. For instance, if you would like to have the robot move forward two feet, converting from feet to millimeters and multiplying by the COUNTS_PER_MM will give you the amount of counts (or ticks) needed to reach that distance!

Create two more variables called leftTarget andrightTarget.

These variables can be fluctuated and edited in your code to tell the motors what positions to go to, rather than place them with the constant variables, create these variables within the OpMode but above the waitForStart(); command.

public void runOpMode() {
        leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");
        rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");
        
        rightmotor.setDirection(DcMotor.Direction.REVERSE);
        
        leftmotor.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
        rightmotor.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
        
        int leftTarget;
        int rightTarget;
        
        waitForStart();

The setTargetPosition();function takes in a integer (or int) data type as its parameter, rather than a double. Since both the leftTarget and rightTargetwill be used to set the target position, create both variables as int variables.

Converting from mm to Feet

Right now the main distance factor is COUNTS_PER_MM , however you may want to go a distance that is in the imperial system, such as 2 feet (or 24 inches). The target distance in this case will need to be converted to mm.

To convert from feet to millimeters use the following formula:

d(mm)=d(ft)×304.8d_{(mm)} = d_{(ft)} × 304.8d(mm)​=d(ft)​×304.8

If you convert 2 feet to millimeters, it comes out the be 609.6 millimeters. For the purpose of this guide, lets go ahead an round this to be 610 millimeters.

Converting Feet to Ticks

Next, multiply 610 millimeters by the COUNTS_PER_MM variable to get the number of ticks needed to move the robot 2 feet. Since the intent is to have the robot move in a straight line, set both the leftTarget and rightTarget, to be equal to 610 * COUNTS_PER_MM

As previously mentioned the setTargetPosition(); function requires that its parameter must be an integer data type. The leftTargetand rightTargetvariables have been set to be integers, however theCOUNTS_PER_MM variable is a double. Since these are two different data types, a conversion of data types needs to be done.

In this case the COUNTS_PER_MM needs to be converted to an integer. This is as simple as adding the line (int) in front of the double variable. However, you need to be cautious of potential rounding errors. Since COUNTS_PER_MM is part of an equation it is recommended that you convert to an integer AFTER the result of the equation is found.

int leftTarget = (int)(610 * COUNTS_PER_MM);
int rightTarget = (int)(610 * COUNTS_PER_MM);

Lastly, edit the setTargetPosition(); lines so that both motors are set to the appropriate target position. To do this add the leftTarget and rightTarget variables to their respective motor:

leftmotor.setTargetPosition(leftTarget);
rightmotor.setTargetPosition(rightTarget);
PreviousConverting Encoder Ticks to a DistanceNextSetting Velocity

Last updated 5 months ago

Was this helpful?